
Book
A Simplified Approach

to

Data Structures
Prof.(Dr.)Vishal Goyal, Professor, Punjabi University Patiala

Dr. Lalit Goyal, Associate Professor, DAV College, Jalandhar

Mr. Pawan Kumar, Assistant Professor, DAV College, Bhatinda

Shroff Publications and Distributors

Edition 2014

Prof.(Dr.) Vishal Goyal,Department of Computer Science, Punjabi University Patiala

• Introduction

• Graphs

• Memory Representation of Graph

Contents for Today’s Lecture

Department of Computer Science, Punjabi University Patiala

Introduction

• This chapter introduces an important non-linear data

structure called graph. The data structure graph has

applications in various fields like electrical and

electronics engineering, computer science, games and

puzzles, geographical information systems etc.

• Graph theory was originated in Konigsberg Bridge

problem by Leonhard Euler, a mathematician who

developed some concepts in solving this problem.

Later, these concepts become the basis of the graph

theory.

• Frequently, we use graphs as a model for the

illustration of various practical situations.

• A graph G consists of finite set of vertices VG and finite

set of edges EG which can be denoted by a tuple

G=(VG , EG).

• Here, the set of vertices VG represents the entities which

has names and some other attributes.

• An edge connects a pair of vertices and represents a

relationship between the two entities.

•

Graph

Graph (continued)

•A graph may be pictorially represented as shown in the

figure:

In this graph, vertices are labeled

using letters a, b, c, d and e.

Therefore,

VG ={a, b, c, d, e}

EG ={ab , be, ed , dc, ca, bc , ad}

or

EG ={e1, e2, e3, e4, e5, e6, e7}

In this graph, edge between two

vertices can be written in any

order. For example, the edge

between the vertices a and d can

be written as either ad or da.

• Directed Graph

In case of directed graph, each edge is assigned a

direction or each edge is identified by an ordered pair of

vertices in the graph rather than an unordered pair.

The figure below shows a directed graph:

Graph Terminology

Graph Terminology(continued)

• Undirected Graph

In case of undirected graph, no directions are associated

with the edges of the graph. The edges of the undirected

graph are represented by unordered pair of vertices.

The figure below shows a undirected graph:

• Outdegree and Indegree

The outdegree of a vertex v in a directed graph G is the

number of edges starting from the vertex v.

The indegree of a vertex v in a directed graph G is the

number of edges terminating at v.

Graph Terminology(continued)

The vertex a has indegree=1 and

outdegree=1.

The vertex c has indegree=2 and

outdegree=1.

• Source and Sink

A vertex v is known as source if its outdegree is one

or more than one but its indegree is zero.

A vertex v is known as sink if its indegree is one or

more than one but its outdegree is zero.

The following figure represents source and sink

Graph Terminology(continued)

node d is a source and node

a is a sink.

Graph Terminology(continued)

• Adjacent Vertices

Two vertices are said to be adjacent if there is a

direct edge between them. In a graph G, the vertex vi

said to be adjacent to vertex vj if there is an edge

between vj and vi. Vertex a is adjacent to vertex b but

vertex b is not adjacent to vertex

a.

• Path

In a graph, a path from vertex vi to vj is a sequence of

vertices each adjacent to the next. Length of such a path is

the number of edges in the path.

A path with n length will have n+1 vertices.

Graph Terminology(continued)

In graph:

a b e is a path

a c d e is a path

a c b e is a path

a e d c is not a path

as a and e are not

adjacent.

a b d is not a path

as b and d are not

adjacent.

Graph Terminology(continued)

1. A path is said to be simple if all the nodes on the path are

distinct with the condition that starting vertex and terminal

vertex should not coincide.

2. A closed path is a simple path in which starting vertex and

terminal vertex are the same with the condition that there

should be minimum three edges in the path.

A closed path is also known as cycle.

In the graph

a b e d c is a simple path

a d e b is a simple path

a b e is a simple path

a b c a is a cycle.

a b e d c a is a cycle

a c d a is a cycle

3. A path is said to be a Hamiltonian path if it contains all the

vertices in the graph.

The following figure represents a Hamiltonian path:

Graph Terminology(continued)

a b c d is a Hamiltonian path.

• An edge is called a loop when its starting vertex and

terminal vertex are the same.

A simple graph usually does not allow loops.

In the following graph, the edge e5 is a loop as its initial

and terminal vertex is same i.e. b.

Graph Terminology(continued)

Graph Terminology(continued)

• Connected Graph

A graph G is said to be connected if no node in the

graph is isolated.

If the graph is undirected then every pair of nodes in the

graph will have a path. Consider a graph having 9

vertices a, b, c, d, e, f, g, h and i.

• Unconnected Graph

A graph G is said to be unconnected if there is no path

between any of the vertices.

In the given graph there is no path between the vertices

f, g, h, i and the vertices a, b, c, d, e. thus it is

unconnected graph.

Graph Terminology(continued)

• Strongly Connected Graph

A directed graph G is called strongly connected, if

there exists a path between each pair of its vertices.

For example, if there is a path between the vertices vi

and vj, then there must also be a path between vj and

vi.

In a strongly connected graph there, there must not be

any source or sink.

Graph Terminology(continued)

• Weakly Connected Graph

A directed graph G is called weakly connected, if

there does not exists a path between each pair of its

vertices.

The following graph is a weakly connected graph as

there is no edge starting from vertex c.

Graph Terminology(continued)

• Weighted Graph

A graph G is said to be weighted if edges in it are

assigned with weights.

This is often desired to represent certain physical

attributes/properties by means of graph.

In case of weighted graph, an edge is represented as:

e={v1, v2, w} , where v1, v2 are the vertices making an

edge and w is the weight of the edge.

For example, the edges of the graph in the figure

are assigned weights

Graph Terminology(continued)

Graph Terminology(continued)

In the graph, the weights assigned to the edges

represents the distance between cities, where the

vertices represent different cities.

Graph Terminology(continued)

• Multigraph

A graph G is said to be multigraph if it contains multiple

edges or loop in it.

For example, the graph below is a multigraph as it

contains a loop at vertex c and multiple edges

between the vertices a and b.

A simple graph does not allow any loop or multiple

edges, or cycle in it.

Memory Representation of Graph

Graph can be represented into the computer memory using

various ways.

The two standard approaches for representing graph are:

1. Sequential Representation by using the Adjacency Matrix

2. Linked List Representation

Memory Representation of Graph(contd…)

1. Adjacency Matrix Representation of Graph

• Suppose G = {Vg, Eg} is a directed graph having n nodes.

Suppose, vertices are ordered by using v1, v2, v3, v4, …,

…,…vn . Then adjacency matrix A for the graph G will

be a square matrix of order n such that:

aij = 1 if an edge lies between the vertices vi and vj

0 if there is no edge between the vertices vi and vj

The adjacency matrix of a graph depends upon the ordering

of its vertices.

If we change the order of vertices in a graph then it will

result in a different adjacency matrix.

Memory Representation of Graph(contd…)

Adjacency matrix formed after changing the order of

vertices will be closely related to the preceding one.

Consider, a directed graph G having vertices

VG = {a, b, c, d, e}

Memory Representation of Graph(contd…)

The adjacency matrix corresponding to this ordering

sequence will be:

Memory Representation of Graph(contd…)

• Incase of undirected graph, the adjacency matrix will be

symmetric, as there will be two entries in the matrix

corresponding to each edge in the graph.

To represent an undirected graph using the adjacency

matrix, it is sufficient to store either the upper triangular

or the lower triangular matrix.

Consider an undirected graph:

Memory Representation of Graph(contd…)

The vertices of the above undirected graph, VG = {a, b,

c, d, e}.

The adjacency matrix for the above graph will be:

• A weighted graph can also be represented into the

computer memory using the adjacency matrix

representation.

In case of weighted graph, the weight of each edge

(vi, vj) in the graph is stored in the respective row and

column of the adjacency matrix.

In the weighted graph, an edge can also have zero

weight. In this case, we have to use some sentinel value

for representing the absence of edge.

Consider a weighted graph G having vertices

VG = {a, b, c, d, e}.

The weighted graph and corresponding adjacency

matrix is as below:

Memory Representation of Graph(contd…)

Memory Representation of Graph(contd…)

Memory Representation of Graph(contd…)

The adjacency matrix representation has a number of

drawbacks.

• It is difficult to store additional information about the

vertices and edges in the graph

• One major problem in this representation is its static

nature. Before storing any graph, it is necessary to find

the number of vertices in it.

• It is very difficult to insert and delete the vertices from

the graph in adjacency matrix representation, as it

requires change in the dimensions of the matrix.

• In adjacency matrix representation, the space for each

possible edge in the graph is reserved.

Memory Representation of Graph(contd…)

• For example, Consider the case of a graph G with n

vertices and a small number of edges as compared to the

n2 entries in its adjacency matrix A, and then the matrix

A will definitely be sparse. Hence, a huge amount of

space is wasted.

• So, this representation is very inefficient for large graphs

with large number of vertices which are connected by

very small number of edges.

Memory Representation of Graph(contd…)

2. Adjacency List or Linked Representation of Graph

In this representation, each vertex in the graph is a node

in a master linked list structure.

Another Linked list starts from each vertex node and

denotes the vertices which are directly adjacent to a given

source vertex.

This method, often called an adjacency list, is more space

efficient than the adjacency matrix representation.

Consider a graph G having vertices VG = {a, b, c, d, e} as

in the following figure:

Memory Representation of Graph(contd…)

Adjacency List of

Nodes

a b

b c, e

c d

d b

e a, d

Memory Representation of Graph(contd…)

Adjacency List Representation of Graph shown above is

as below:

